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Abstract— In this paper, we propose an MMPP (Markov Modulated
Poisson Process) traffic model that accurately approximates the LRD
(Long Range Dependence) characteristics of Internet traffic traces. Using
the notion of sessions and flows, the proposed MMPP model mimics the
real hierarchical behavior of the packet generation process by Internet
users. Thanks to its hierarchical structure, the proposed model is both
simple and intuitive: it allows the generation of traffic with desired
characteristics by easily setting few input parameters which have a clear
physical meaning. Results prove that the queuing behavior of the traffic
generated by the MMPP model is coherent with the one produced by real
traces collected at our institution edge router under different networking
scenarios and loads. Due to its characteristics, the proposed MMPP traffic
model can be used as a simple and manageable tool for IP network
performance analysis, as well as for network planning and dimensioning.

I. INTRODUCTION

Identifying simple and accurate models of Internet traffic is
not easy, as can be seen by scanning the vast literature on the
subject (see Section II for a very short overview). A general
consensus exists on the fact that Internet traffic is not Poisson
at any level of aggregation, but researchers disagree on the
approaches that should be used for the description of the traffic
features. In this paper we propose an approach based on an
MMPP (Markov Modulated Poisson Process) representation
of traffic.

One of the main characteristics of Internet traffic, probably
the one that impacts the most on network performance, plan-
ning, and dimensioning, is the Long Range Dependence (LRD)
of the distribution of several parameters (e.g., packet inter-
arrival time, amount of data transferred per time unit, etc.).
A wide range of interpretations of the LRD of Internet traffic
were proposed, and a large number of models for the repre-
sentation of LRD traffic were devised, often quite different
from one another, depending on the perspective of the work.
Indeed, two main perspectives motivated the development of
Internet traffic models: (i) trace fitting, and (ii) performance
analysis. When the focus of the work is the fitting of real
traffic traces, sophisticated stochastic processes are used to find
the most elegant fitting, and to try to obtain a mathematical
explanation of the observed LRD. On the contrary, when
the focus of the work is on network performance analysis,
with emphasis on queuing behavior and network planning and
dimensioning, more “tractable” models are sought, that offer a
phenomenological approximation of the traffic characteristics,
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not trying to explain why Internet traffic is LRD, but only
to study how LRD impacts network performance. The work
in this paper belongs to the second category. We present and
discuss a model of Internet traffic based on an MMPP, that
tries to mimic the hierarchical generation of data by Internet
users, and is capable of effectively capturing the key aspects
of the traffic measured on an edge router, hence representing
an aggregation of the traffic generated by a number of sources.
The proposed MMPP model is particularly appealing, because
it is easy to understand, and it is controlled by a small number
of parameters (just five), whose influence on the model output
is predictable. The proposed MMPP traffic model was tuned
on measured traffic traces, and its behavior was studied in
queuing systems with finite buffers, representing multiple-node
network topologies. A comparison of the queuing performance
of the traffic produced by the MMPP Model and by traces
measured on an edge router proves the accuracy of the traffic
description.

II. RELATED WORKS

Most of the research on Internet traffic modeling stemmed
from the seminal works[1], [2] showing that traffic traces
captured on both LANs and WANSs exhibit LRD properties.
We mention here only works related to network performance
evaluation, that share the same objective of our work. We
thus ignore, for the sake of brevity, all the works focusing
on the fitting of measured traces, without the goal of using
the resulting models for network analysis and design.

One of the first attempts to describe LRD exploited Frac-
tional Brownian Motion (FBM) models, whose Gaussian na-
ture helps in the study of the queuing behavior [3]. However,
FBM models present a restrictive correlation structure, that
fails to capture the short-term correlation of real traffic and its
rich scaling behavior.

Another approach to describe LRD consists in looking at
packet traffic as a superposition of source-destination traffic
flows, assuming that each single flow has an ON/OFF be-
havior [4], [5]. If the ON, OFF (or both) period durations
are generated according to heavy-tailed distributions, then
the resulting aggregate traffic exhibits asymptotic self-similar
properties with LRD behavior.

An M /G /oo queue with service time with infinite variance
is used in [6], [7] to model video sources. Moreover, since the
heavy-tailed distribution of file sizes was measured on storage
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devices [8], the M /G /oo with high variability services model
is a popular model to generate traffic with LRD properties.

Wavelet analysis (see [9] for a review) was shown to be one
of the most powerful methods for the description of stochastic
properties of traffic. Several authors ([10], [11], [12]) used a
wavelet approach to generate synthetic traffic, possibly taking
explicitly into account a multi-fractal model as in[10]. The
main advantage of these models, specially when multifractality
is taken into account, is their rich scale-invariance property.
These models are computationally very efficient, but they
suffer for the lack of a simple mapping between the traffic
parameters and the model coefficients.

All these traffic models deviate considerably from classical
Markovian models, which, however, continue to be widely
used for performance evaluation purposes [13], [14], [15],
[16]. In these works, the Markov Modulated Poisson Pro-
cess (MMPP) is considered as the best Markov process to
emulate LRD [14] and scale invariance [13] (multifractality in
particular), though in[15], [16] it is correctly pointed out that
any MMPP cannot exhibit LRD in a mathematically proper
way, i.e., it is always possible to find a time lag above which
an MMPP correlation decays exponentially. The authors of
these works thus define a “local Hurst parameter” using an
approximate LRD definition, valid on a limited range of time
scales only. In this work we will also apply such an approach.
In[17], the authors show that the long-term correlation of
traffic beyond a certain threshold does not influence the
performance of a system: this result paves the way to the use of
models where correlation is limited (such as MMPP models)
to derive credible results in network performance studies.
These papers, and [13], [14] in particular, are those that most
influenced our work, though the approach we used to obtain
the proposed MMPP model, and its final structure, differ
considerably from the approaches in those papers, since the
parameters of our model have a direct mapping on measurable
traffic characteristics, as explained in Sect. III

III. THE TRAFFIC GENERATION MODEL

The main objectives in the model development were: i)
simplicity, and ii) possibility of mapping the model parameters
onto easily understandable traffic measures.

In order to achieve those goals, we decided to replicate
the key aspects of the packet generation mechanisms activated
by Internet users and applications. Packets are generated with
a nested process, where sessions are started by an external
process, flows are generated within sessions and packets are
generated within flows.

Fig.1 depicts this situation. The hierarchy in the packet
generation process introduces memory in the system, regard-
less of the nature of the generation processes of sessions, of
flows within sessions, and of packets during flows. However,
the stochastic properties of the overall packet arrival process
clearly depend on the underlying generation processes.

The model we propose mimics the hierarchical structure of
flow and packet generation, but models neither the complex
stochastic characteristics of the generation processes of flows
and packets, nor the complex distributions of the number of
flows within sessions and of the number of packets within
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Fig. 2. CTMC of the proposed model.

flows. The model assumes that flows within sessions arrive
following a Poisson process, and also that packets within flows
arrive following a Poisson process; in addition, the number of
flows within sessions, and the number of packets within flows,
is assumed to be geometrically distributed, so that the global
model can be described by a Continuous-Time Markov Chain
(CTMC) (see Fig.2) and the generated traffic can be computed
as a reward measure on the CTMC. Authors in[18] followed
a similar hierarchical approach, but tried to fit the measured
distributions for flows and packets arrivals, so that the overall
model is not Markovian and is much more complex. The
difference between our model and the model proposed in [14]
lies instead in the hierarchical structure: The MMPP process
in [14] does not have a pre-defined hierarchical structure, and
LRD is obtained through a direct parameter fitting, which
results in a very large number of parameters within the model.

Our model is completely described by five parameters:

As : the arrival rate of new sessions;

A¢  : the flow arrival rate per active session;
Ap : the packet arrival rate per active flow;
Ny : the average number of flows per session;

: the average number of packets per flow.

B =1—1/Ny is the probability that a flow is not the last of
a session; py = A,/(INp —1) is the average duration of a flow.

0-7803-8533-0/04/$20.00 (c) 2004 |IEEE



TABLE I
SUMMARY OF THE ANALYZED TRACES

Name date start stop packets flows
time time (millions) | (thousands)
Peak’01 2 Feb 01 10:52 | 13:52 11 540
Night’01 2 Feb 01 04:52 | 07:52 0.43 30
Peak’00 13 Apr 00 | 08:10 | 14:10 12 564
Night’00 13 Apr 00 | 02:10 | 08:10 0.92 79

In all states, the global packet generation rate (the reward) is
nyAp, while the flow generation rate is ngAy + As.

The CTMC that modulates the packet and flow arrival
processes is defined by the state variable 5 = (ns,ns), where
ny and ng denote the number of active flows and the number
of active sessions, respectively. The state-transition diagram
of the CTMC model of the modulating process is reported in
Fig.2. Transitions can be classified in four groups:

« From state (i,7) to state (i + 1,7 4 1): arrival of a new

flow which is the first flow of a session; the rate is Ag;

« From state (i, j) to state (¢ + 1, j): arrival of a new flow

which is neither the first nor the last flow of a session;
the rate (1 — 3)\s + jBAf;

« From state (4, 7) to state (¢ + 1,j — 1): arrival of a flow

which is the last of a session; the rate is j(1 — B) Ay

« From state (i, j) to state (i — 1, j): termination of a flow

which is not the last of a session; its rate is i .

A. Tuning the Model

In order to tune and validate the model, we used traces
collected at the access link of our institution (see[19]). We
selected four traces with different characteristics, whose key
parameters are summarized in Table I. The last two columns
report the number of samples in each trace. We considered
incoming streams of data, taking into account the fact that
our campus LAN behaves mainly as a “client.” The outgoing
streams are less interesting due to the very low link utilization.

The statistical analysis of the traces gives immediately three
of the model parameters, IV,, Ay, and Ay, that are directly
mapped on the measured quantities. A, is obtained as the
ratio between the average number of packets per flow and
the average flow duration. On the contrary, the parameters A
and N cannot be mapped directly on measurable quantities,
because it is not easy to identify sessions within the data flow.
We use these parameters to fit the correlation properties of the
traffic.

The correlation analysis is based on the estimation of the
Hurst parameter H through the wavelet decomposition of
processes embedded in the traces[9]. Within the traces we
identify the processes of event inter-arrival times I(k), and
event counting Np(n), taking both the flows and the packets
as events. The counting process is obtained by counting the
number of arrivals in a time interval [nT,(n 4+ 1)T). We
use three values of T' € {1,0.1,0.01}s, and name the three
counting processes N1, No and N3, respectively. This means
that, within each trace, eight Hurst parameters are defined, four
for packet-level processes and four for flow-level processes.
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Fig. 3. Impact of Ny on the Hurst parameters generated by the model, for

different values of the ratio C' = A/ 5 (a) on the flow process; (b) on the
packet process.

Ny is a measure of the memory of the system (the length of
sessions), while the role of )\ is less intuitive. Fig. 3, reports a
sensitivity analysis for the Hurst parameter of the interarrival
process for both flows and packets, for different values of the
ratio C' = A /As. As expected, increasing Ny monotonically
increases the Hurst parameter at both the flow (Hjy) and
packet (H)) levels'. Notice that Ny = 1 ~ H; = 0.5 by
definition, while H,, is already larger than 0.5, due to the
memory introduced by the flow length. On the other hand,
C influences more H than H),.

There is no direct mapping between \s, Ny and the Hurst
parameters; thus, after setting IV, A, and Ay, we resort to the
following iterative procedure to tune A, and Ny.

1) Let C = A;/Af and set Ny =1 and C = 1;

2) Generate a synthetic sequence with the same number of
samples as the real trace;

3) Estimate the Hurst parameter of the synthetic trace at
both packet and flow level, and compare them with those
of the real trace;

4) If the fitting is good, exit, else assign new values to Ny
and C' and go to 2

The new values to be assigned to Ny and C' at step 4 of the
procedure are chosen following the empirical evidence that the
larger Ny is, the larger H,, and H are; and also, the larger C
is, the larger Hy, while C has little influence at packet level.

The selection of Ay and Ny by means of the above fitting
procedure requires only few iterations to provide accurate
results (approximately 10 in our tests, to obtain a fit within
10% in the worst case). Table I reports the results obtained
by fitting the four traces we selected;

Notice that all processes of all traces show similar values
for the Hurst parameter ranging from 0.71 to 0.88. Indeed, H ¥

and H,, are almost independent from the considered trace or
process, even if the operating conditions in the four selected
traces are quite different (different link speeds, different loads,

The Hurst parameters of the traces are indicated as H 1 pr respectively.
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TABLE II
HURST PARAMETERS OF THE FOUR CONSIDERED TRACES (fI) AND OF
THE FITTED SYNTHETIC TRACES (H)

Flow level analysis

Peak’01 Night’01 Peak’00 Night’00

Hy | Hy || Hy | Hy || Hy | Hy || Hy | Hy
I 0.74 | 0.74 || 0.86 | 0.84 || 0.76 | 0.75 || 0.74 | 0.73
N || 076 | 0.71 || 0.76 | 0.82 || 0.75 | 0.75 || 0.78 | 0.77
N2 || 075 | 0.71 || 0.73 | 0.83 || 0.74 | 0.72 || 0.76 | 0.76
N3 || 0.74 | 0.78 || 0.80 | 0.79 || 0.75 | 0.73 || 0.78 | 0.79

Packet level analysis

Peak’01 Night’01 Peak’00 Night’00

H, | Hp H, | Hp H, | Hy H, | Hp
I 0.87 | 0.84 || 0.71 | 0.82 || 0.84 | 0.85 || 0.84 | 0.83
N || 0.88 | 0.87 || 0.73 | 0.87 || 0.86 | 0.86 || 0.83 | 0.83
N> || 0.88 | 0.82 || 0.72 | 0.79 || 0.87 | 0.86 || 0.83 | 0.82
N3 || 0.88 | 0.84 || 0.76 | 0.86 || 0.88 | 0.85 || 0.87 | 0.88

N
W

Fig. 4. The third topology T3.
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different patterns between Peak and Night). This can be taken
as a strong indication that LRD is an intrinsic characteristic of
the Internet traffic and is not induced by network conditions.

IV. PERFORMANCE EVALUATION

For the evaluation of the queuing performance of the traffic
generated by our MMPP model, we consider three different
network topologies. Topology T1 comprises a single link and
a single source; topology T2 aggregates four different sources
on a single link; topology T3, shown in Fig.4 is a tandem
network with three links and four traffic relations, arranged so
as to aggregate two traffic relations on every link, with relation
®, crossing all three links, and all other relations interfering
with it on a different link.

We test the queuing behavior by simulation using “ns-2”
[20], comparing the behavior of the synthetic traces to that
of the original measured traces. To avoid useless repetitions,
we report the results for the Peak’01 trace only, since all
other results are equivalent. When the measured traces are
used, the service times at nodes depend on the measured
packet length. The MMPP traffic model, instead, generates
only arrival instants, and the packet length, determining the
service time at the nodes, is randomly associated with packets.
The packet length value is drawn from a distribution fitted
on the measured one, which exhibits the well-known multi-
mode behavior, with peaks for very short packets and for the
different MTUs (Maximum Transfer Units) in the network.
The peak of the Ethernet frame at 1,500 bytes dominates the
lot. Notice that this procedure destroys all possible correlation
between the arrival process and the packet length distribution.

IEEE Communications Society

i
Data
Poisson
Model

“Data -
Poisson ======+
Model

Fig. 5. Buffer occupancy distribution, topology T1 with infinite buffer; (a)
load p = 0.9 and (b) load p = 0.8.
10O T T T T 100 T
Data -------- Data --------
Model Model
Poisson ------- Poisson -------
10" B 107! :
bivii i,\ : i
. f N 7
= 1\‘\1;‘ ® N
% 10 O E 10 N
2, X % B /
' \\ \
10° + 10”3 7
=069 i YA =09 N
-4 -4
10 10
10° 10' 10? 10° 10! 10%
(a) X (b) X
Fig. 6. Buffer occupancy distribution, B = 32, 64, 128, 256, 512 packets;

(a) topology T1 and (b) topology T2.

To simplify reading the plots (unless otherwise stated), we
normalize the link load, changing the link speed appropriately.
Results at different load levels or with variable loads on
different links in topology T3 yield similar results. Fig.5
reports the queue length distribution for infinite buffer in
topology T1. The thin dashed line refers to the measured trace,
the solid line to the MMPP model. The thick dashed line
refers to a plain Poisson arrival process (the packet length
distribution is still the measured one) and is reported for
reference. The left plot refers to load 0.9; the rigth plot to
load 0.8; results show that the load does not influence the
MMPP model behavior. The buffering behavior of the model
is satisfactory, and the reference Poisson curve shows that
the packet length distribution has a marginal impact on the
queuing behavior.

Queueing behavior is much more interesting (and realistic)
in the finite buffer case. We now consider the three topologies
with five different values of buffer size: B = 32, 64, 128, 256,
and 512 packets. Fig. 6 refers to the T1 and T2 topologies. The
matching is satisfactory, though the trace-driven simulations
always show a higher probability of full buffer, that is reflected
in a slightly higher loss rate. The Poisson driven simulations
refer only to B = 32, and show how inaccurate is a simple
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Poisson model, even for a very short buffer size. All other
curves for Poisson arrivals are practically coincident with
this one, and are not reported to avoid cluttering the graph.
Multiplexing traffic does not change the situation, and actually
the accuracy of the results obtained with the MMPP traffic
model is even better. Fig. 7, finally, refers to the multi-node
T3 topology, and reports the behavior of all three buffers.
Once again, the MMPP model behavior is very close to that
of traces, and we can observe that traffic crossing several
bottleneck (as the traffic relation ®; does) does not alter results
significantly.

V. CONCLUSIONS

In this paper we presented a simple hierarchical MMPP traf-
fic model capable of generating traffic that accurately emulates
the aggregate Internet traffic measured at an edge router. The
model is based on a layered structure of sessions, that generate
flows, that finally generate packets. The properties of the
model, with respect to the emulation of the LRD traffic char-
acteristics, and to the queuing behavior in several networking
scenarios, were analyzed in detail, comparing synthetic traffic
with real measured traces. The comparison shows that the
MMPP traffic model emulates real traffic quite accurately. The
simplicity of the MMPP traffic model makes it an ideal traffic
generator to drive simulations (the code for ns-2 is available
for download at [21]) aimed at planning and dimensioning
links and buffers. In addition, the Markovian properties of
the MMPP traffic model make it analytically tractable, so
that analytic solutions for simplified networking scenarios are
possible (e.g., deterministic or exponential service times). Our
work proceeds in this direction.
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